Бакалавриат
Направление: Прикладная математика и информатика
очная
4 года
Военная кафедра
ru
русский
Информация о поступлении
Вступительные испытания
    Array ( [0] => Array ( [NAME] => Математика [ID] => 10504 [TRIM_NAME] => [LINK] => http://www.fa.ru/priemka/pk/Documents/2023/%D0%9F%D1%80%D0%BE%D0%B3%D1%80%D0%B0%D0%BC%D0%BC%D1%8B%20%D0%92%D0%98/%D0%9C%D0%B0%D1%82%D0%B5%D0%BC%D0%B0%D1%82%D0%B8%D0%BA%D0%B0%20-%20%D0%B1%D0%B0%D0%BA-%D1%81%D0%BF%D0%B5%D1%86%202023.pdf ) [1] => Array ( [NAME] => Русский язык [ID] => 3943 [TRIM_NAME] => [LINK] => http://www.fa.ru/priemka/bakalavr/Documents/%d0%a0%d0%a3%d0%a1%d0%a1%d0%9a%d0%98%d0%99%20%d0%af%d0%97%d0%ab%d0%9a.pdf ) [2] => Array ( [NAME] => На выбор: Информатика и информационно-коммуникационные технологии (ИКТ)​​ или Физика или Иностранный язык [ID] => 28746 [TRIM_NAME] => Иностранный язык [LINK] => http://www.fa.ru/priemka/bakalavr/Pages/ispitaniya.aspx ) )
  1. Математика
  2. Русский язык
  3. На выбор: Информатика и информационно-коммуникационные технологии (ИКТ)​​ или Физика или Иностранный язык
Количество мест
Бюджетные места
105
В т.ч. особая квота
11
В т.ч. целевая квота
11
В т.ч. отдельная квота
11
Платные места
20
Данные приёма
2024 года
Конкурс
2,86
чел./место
Средний балл (ЕГЭ)
86,42
Стоимость обучения
От: 350 000
Описание программы
Образовательная программа "Прикладное машинное обучение" направлена на подготовку специалистов в области машинного обучения и науки о данных. Студенты этой программы изучают математические основы машинного обучения и анализа данных, языки программирования и инструменты создания интеллектуальных программных систем.

В рамках обучения студенты изучат теоретическую и практическую составляющие машинного обучения, компьютерного зрения и обработки текста на естественном языке. Также они будут заниматься анализом и обработкой больших данных, оценкой качества данных, визуализацией информации и созданием, обучением и оценкой качества глубоких нейронных сетей для решения прикладных задач. Кроме того, они будут углубленно изучать язык программирования Python, будут знакомиться с математическими методами для решения оптимизационных задач в различных областях экономики и финансов, изучат математические модели для обоснования финансовых решений.

Выпускники этой программы смогут работать аналитиками данных, инженерами в области машинного обучения и искусственного интеллекта. Они смогут создавать рекомендательные системы, интеллектуальных чат-ботов, системы компьютерного зрения. Кроме того, они могут стать специалистами в области разработки высокопроизводительных программных систем в банковском секторе или в крупных корпорациях или интернет-компаниях.
Стратегические партнеры
Руководители программы
Макрушин
Сергей Вячеславович
  • К.э.н., доцент
  • Руководитель лаборатории Искусственного интеллекта и сетевого анализа, доцент Департамента анализа данных и машинного обучения Факультета информационных технологий и анализа больших данных
  • Область научных интересов: теория сложных сетей, глубокое обучение на графах, семантический анализ текстов и диалоговые системы, базы знаний, анализ финансово-экономических данных Исследовательские проекты: руководство 4 проектами в интересах ПАО «Сбербанк» («Исследование применимости инновационной технологии граф знаний и инструментов искусственного интеллекта для целевой омниканальной базы знаний «Knowledge Assistant» в интересах ПАО Сбербанк»; «Разговорный искусственный интеллект с эмпатическим вовлечением пользователя в обществе на определенные тем на естественном языке»; «Проверка гипотезы о достаточности структурированных данных из базы знаний Wikidata»); руководство 1 проектом в интересах «Газпромбанк»: «Обогащение графового хранилища данных автоматически размеченными транзакциями клиентов и разработка модификации модели предсказания дефолтов, использующей дополнительные признаки на основе обогащенных данных графового хранилища». Научные монографии: «Парадигмы цифровой экономики: технологии искусственного интеллекта в финансах и финтехе»; «Гис-технологии для управления устойчивым пространственным развитием регионов России».
После окончания программы выпускники смогут
Ставить и решать оптимизационные задачи в различных сферах экономики и финансов
Применять методы и инструменты анализа данных и машинного обучения при подготовке аналитического обоснования финансово-экономических решений
Применять математический аппарат при разработке вычислительных алгоритмов для решения задач в области экономики и финансов
Составлять прогнозы, готовить рекомендации для принятия финансово-экономических решений
Собирать наборы данных, в том числе больших данных, выполнять их подготовку для анализа в соответствии с решаемой прикладной задачей
Выполнять анализ качества данных, выявлять и корректировать отклонения в данных и выполнять визуализацию данных
Решать прикладные задачи машинного обучения, оценивать качество решений и интерпретировать их результаты
Строить, обучать и оценивать качество моделей глубокого обучения в прикладных задачах
Выполнять сборку модулей и компонент программной реализации моделей машинного обучения и развертывания реализации моделей машинного обучения
Дисциплины программы
  • Алгоритмы и структуры данных в языке Python
    В рамках этого фундаментального годового курса не только формируется навык программирования на одном из самых востребованных языков, но и закладываются знания о ключевых структурах данных и алгоритмах.
  • Практикум по программированию
    На этом двухлетнем предмете студенту получают навыки самостоятельного программирования и решения задач от самых простых в первом семестре до тяжелых коллективных проектов в четвертом.
    Здесь нет лекций, только практика кодинга под руководством опытного наставника-профессионала.
  • Машинное обучение
    Этот курс научит вас использовать самые распространенные инструменты для анализа данных и машинного обучения. После освоения данного курса вы научитесь применять классические модели регрессии и классификации, писать код для обучения и тестирования моделей, вести проекты в области построения интеллектуальных систем.
  • Технологии обработки данных
    Для работы с данными необходимо знать их форматы, структуру и основные инструменты работы с данными в разных формах. На этом курсе студенты учатся работать с наиболее распространенными форматами данных, изучают средства парсинга, обработки и очистки данных.
  • Глубокое обучение
    В рамках этой дисциплины студенты научатся работать с нейронными сетями, строить современные модели обработки текстов, изображений, видеоданных на основе методов глубокого обучения и использованием современных библиотек, в том числе с вычислениями на GPU.
  • Технологии обработки больших данных
    Этот уникальный авторский курс знакомит с самыми передовыми технологиями обработки и анализа больших объемов данных.
  • Обработка текстов на естественных языках
    На этом предмете студенты погрузятся в увлекательный мир обработки текстов на естественных языках - области, которая сейчас очень востребована во многих областях - от машинного перевода до голосовых помощников.
  • Рекомендательные системы и коллаборативная фильтрация
    Студенты на этом предмете будут учиться строить рекомендательные системы наподобие работающих в сердце всех крупных коммерческих компаний. Студенты данного курса научатся и внутреннему устройству рекомендательных систем и инструментальным средствам их создания.
  • Машинное зрение
    Цель дисциплины заключается в изучении методов цифровой обработки изображений с элементами машинного обучения. Излагаемые алгоритмы применяются при проектировании автономных устройств (роботов), а также используются в интеллектуальных задачах обработки изображений
Получить консультацию о программе
Отправте заявку и с вами свяжется специалист для консультирования
Карьера и работа

Специалисты, получившие подготовку по данной программе бакалавриата, находят работу в :

  • банках, 
  • инвестиционных, 
  • страховых,
  • телекоммуникационных, 
  • торговых, 
  • производственных компаниях, 
  • организациях различных форм собственности, индустрии и бизнеса, осуществляющих разработку и использование информационных систем, интеллектуальных продуктов и сервисов, основанных на технологиях и научных достижениях в области анализа данных и принятия решений.
Организации, в которых можно пройти практику с последующим трудоустройством
Уникальные преимущества программы
  • Компаниям практически любой сферы деятельности сегодня требуется проведение анализа данных, и выпускники программы легко находят работу
  • Обучение на программе обеспечивает фундаментальные знания и практические навыки необходимые для разработки и внедрения цифровых технологий.
  • Программа обучения составлена и актуализируется с учетом требований работодателей
  • Студенты проходят практику в ведущих банках, инвестиционных, страховых, консалтинговых и производственных компаниях (Сбербанк, Газпромбанк, ВТБ, Альфа-капитал, Финам, Ингосстрах, KPMG, Deloitte и др.)
  • Возможность построения индивидуальной траектории обучения на старших курсах.
  • Возможность участия в научной и научно-практической деятельности.
Ведущие преподаватели
Как поступить
1
Выбрать программу бакалавриата
2
Собрать документы/ Заполнить электронную анкету
3
Написать
заявление
4
Пройти вступительные испытания
5
Начать
обучение
Почему абитуриенты выбирают наш ВУЗ?
Остались вопросы? Задайте свой вопрос приемной комиссии
Приемная комиссия
+7(495)249-5249 9:00-18:00
График работы приёмной комиссии: понедельник-пятница: 9:00-18:00
125993, Москва, Ленинградский пр-т, д.51/1
Понравилось? Поделитесь!